
Path Planning on SE(2) for Autonomous Vehicles
Stefan Ramdhan

Computing and Software
McMaster University
Hamilton, Canada

ramdhans@mcmaster.ca

Abstract—Path planning for autonomous vehicles (AVs) is a
critical step in the autonomy pipeline enabling AVs to plan their
way through an environment toward a goal. Rapidly Exploring
Random Trees (RRT) is a sampling-based method that constructs
a graph of robot poses to find a path between the start and
goal poses. This project combines the asymptotically optimal
RRT* with Dubins Curves to generate a pose graph, followed by
smooth and feasible path generation via interpolation on SE(2).
A manifold-based optimization approach is investigated to find
a smooth sequence of poses that obeys workspace constraints
and non-holonomic constraints. The solution will be implemented
using the CARLA [1] driving simulator, and evaluated using a
forward-drive parking lot scenario.

Index Terms—path planning, group theory, Lie groups, motion
planning

I. INTRODUCTION

Trajectory planning for non-holonomic robots has been a
topic of interest to both industry and academia due to the
application to Autonomous Vehicles (AVs), rovers, and even
robot arms. To plan a trajectory, one must first plan a path,
which is a sequence of points from an initial point to a final
point, passing through pre-defined points [2]. A trajectory on
the other hand is a path plus timing information [2]. This
project focuses primarily on path planning, with trajectory
planning as a stretch goal.

Planning paths for AVs requires adherence to many con-
straints, including static and dynamic obstacle avoidance, non-
holonomic constraints, and performance considerations such
as energy consumption and passenger comfort. A common
approach to address these considerations is to split tasks
between a global planner and a local planner. The global
planner generates a rough, feasible, and collision-free path
from a start pose to a goal pose. It must incorporate the
non-holonomic constraints of the vehicle; otherwise it will
produce paths that are infeasible for a vehicle to follow, such
as requiring lateral velocity without longitudinal velocity.

Algorithms to plan paths are commonly categorized into
grid-based methods and sampling-based methods. Grid-based
methods discretize the planning space into cells, and produce
paths by exploring these cells, according to a cost function. Ex-
amples include the A*, or its non-holonomic version Hybrid-
A*. Sampling-based methods randomly explore free configu-
ration space to build a tree of paths. Examples include Rapidly
Exploring Random Trees (RRT), and Probabilistic Roadmaps
(PRM). RRT is often used in practice because it scales better
than A* as the state space increases in size, however it does

not produce an optimal path [3]. Karaman and Frazzoli [3]
introduced RRT* that produces asymptotically optimal paths
without significant increases in computational complexity, by
intermittently rewiring the tree based on a cost function. To
incorporate non-holonomic constraints into the RRT* planner,
Dubins [4] and Reeds-Shepp curves [5] are commonly used,
which model simple vehicle motion using very basic motion
primitives. Dubins curves are shortest paths between two poses
for a simple vehicle that has a fixed forward velocity and a
single turning radius, and only allows forward motion, while
Reeds-Shepp curves use similar motion primitives, but also
allow backward motion. This project will use RRT* with
Dubins Curves as the global planner to generate a rough path
to the goal pose.

RRT generates a series of waypoints that, if interpolated
using piecewise-linear functions, will often generate jerky
paths that contain unnecessary turns, and discontinuities at
the waypoints [6]. A local planner is often used to determine
how to get between waypoints smoothly, and perform local
replanning in case dynamic obstacles such as other vehicles
are blocking the path [7]. For simplicity, this project will
only introduce static obstacles, but local planning is still
required to determine the path taken between waypoints.
This local planning step requires interpolation to generate
a fine-grained, smooth path between these waypoints in a
manner that respects the constraints imposed in the global
planning stage. This project explores three such methods. The
first method is interpolation by computing the geodesic on
SE(2), successively between waypoints. The second method
constructs an interpolating cubic spline on SE(2). Third, an
optimization-based approach is explored to generate a path
that is C2 continuous, and respects kinematic constraints and
obstacle constraints.

The rest of the report is organized as follows. Section II
reviews the related literature on RRT* with non-holonomic
constraints and interpolation on Lie groups. Section III for-
malizes the problem and outlines the three methods by which
the sparse RRT* path will be interpolated. The experiments
and results are given in Section IV. Finally, we conclude with
Section V and discuss future work.

II. RELATED WORK

There have been many studies focused on adapting RRT
to embed motion constraints such as non-holonomy into the
algorithm. Berenson et al. [8] adapted bi-directional RRT to

handle robot constraints such as torque limits, and collision
avoidance. Their adaptation, called Constrained Bi-directional
RRT (CBiRRT), explores the dynamic configuration space,
which changes based on what the robot arm is holding. RRT
integrated with Adaptations of RRT that integrated Ackermann
drive planning models such as the Dubins Curves and Reeds-
Shepp curves are easily traversable, but far from optimal [9]
[10]. Han et al. [11] use a vehicle model integrated with RRT,
thus constraining the configuration space, and producing paths
corresponding to parallel parking and other difficult parking
scenarios. However, Han et al. does not use a constraint-aware
path smoothing, thus violations to the encoded constraints in
the final path could go unnoticed. Pepy et al. [12] also embed
vehicle dynamics into the configuration space, however the
final paths are suboptimal, but nonetheless feasible for a non-
holonomic vehicle.

On the topic of interpolation on Lie groups, Pan et al. [6]
smoothly interpolate between waypoints in a 3D configuration
space by splitting the translation and rotation components
of SE(3). The translation component is a vector in R3, so
the authors construct a cubic B-spline through all positional
components of the waypoints produced by RRT. Then, the
rotational components in SO(3) are splined through by taking
the log map of the set of orientations, constructing a cubic
B-spline in the Lie algebra so(3), then applying the expo-
nential map back onto SO(3). This approach interpolates a
C2 continuous 3D curve, but does not incorporate kinematic
constraints. To the best of my knowledge, there does not exist
any literature on constraining a spline in the Lie algebra by
kinematic constraints. Most Lie group interpolation techniques
take an optimization-based approach because of the ability to
incorporate constraints in the form of a cost function [6].

III. PROBLEM FORMULATION & METHODOLOGY

A. Global Planning

We define the configuration space C of the AV as SE(2).
SE(2) is the Lie group representing the group of rigid trans-
formations in 2D space. If R ∈ SO(2), t ∈ R2, we define a
pose in 2D space to be T ∈ SE(2):

T =

(
R t
0 1

)
∈ SE(2).

We partition C into free configuration space Cfree and obstacle
space Cobs such that,

Cfree ∪ Cobs = C.

Free configuration space represents space that the vehicle can
occupy, while obstacle space represents any space that the
vehicle cannot occupy, such as lane markings and unpaved
roads. When RRT* samples randomly to build a tree of poses,
it is limited to sampling within Cfree and ensures that the entire
path between one node and another is in Cfree. To account for
the size of the vehicle, Cobs is inflated so that the state space
only needs to include position and orientation. The state space
x is given by x = [x, y, θ]T .

Traditional RRT* must minimize a distance metric, which
is typically Euclidean distance. For this project, RRT* with
Dubins Curves will be used, so the distance metric will be the
path length of the Dubins Curve.

RRT* generates a discrete, jerky path γRRT∗ =
{x0,x1, . . . ,xN−1} ⊂ SE(2). While RRT* is asymptotically
optimal, often, even after thousands of nodes are generated,
the path is jagged due to the random nature of RRT. In most
motion planning implementations, paths that contain many
sharp or jagged turns are typically smoothed, as the vehicle
may need to slow down to execute these sharp turns, thereby
expending more energy [13].

B. Interpolation

1) Piecewise Geodesic Interpolation: The first approach to
interpolating on SE(2) is to compute the geodesic between
poses, then combine them in a piecewise fashion. Geodesic
interpolation on SE(2) is analogous to geodesic interpolation
in R3. Simply take the log map of the difference in poses to
represent the twist in the Lie algebra. This twist represents
the change in pose required to go from xi to xi+1. Since
the Lie algebra is a linear vector space, we can interpolate
between Lie algebra elements ξi = [ρ1,i ρ2,i ωi]

T just as we
would interpolate between vectors in R3. Then, we apply the
exponential map to get back onto the Lie group.

The geodesic between two consecutive poses xi,xi+1 ∈
γRRT∗ is given by,

γ(t;xi,xi+1) = xi exp(t log(x
−1
i xi+1)), t ∈ [0, 1].

To extend this approach to multiple successive poses, we can
instead parameterize using t ∈ [0, N−1] where N is the num-
ber of poses in γRRT∗. The combination of these geodesics
will create a piecewise geodesic interpolating function γpgi,
which is an interpolating path between start and goal poses,
passing through waypoints in γRRT∗ and is given by,

γpgi =


x0 exp

(
t log(x−1

0 x1)
)
, t ∈ [0, 1],

x1 exp
(
t log(x−1

1 x2)
)
, t ∈ [1, 2],

...
...

xN−2 exp
(
t log(x−1

N−2xN−1)
)
, t ∈ [N − 2, N − 1].

Because piecewise geodesic interpolation does not encode
non-holonomic constraints and obstacle constraints, this path
will not be feasible for an AV. Furthermore, this approach is
expected to contain discontinuities at the waypoints defined
by RRT*. Within piecewise geodesic interpolation, each suc-
cessive segment of γpgi is unaware of the first and second
derivatives of the previous segment, which will result in
discontinuities in function velocity and acceleration at the
waypoints. To account for first and second derivatives at
the waypoints, we can use a cubic spline between RRT*
waypoints, which guarantees global C2 continuity.

2) Cubic Spline Interpolation: A cubic spline on SE(2) can
be computed by constructing a cubic spline in the Lie algebra
se(2), then applying the exponential map to the Lie group
SE(2) [14]. Simply take the poses x ∈ γRRT∗, and apply a
transformation to represent poses relative to reference pose x0.
Next, take the log map to represent poses as a twist in the Lie
algebra, then spline in the Lie algebra, and finally apply the
exponential map to get back onto the Lie group.

Formally, take poses x0,x1, . . . ,xN−1 ∈ γRRT∗. Trans-
form global poses into local poses by a transformation relative
to reference pose x0,

∆xi = x−1
0 xi.

Then, take the log map of the relative poses:

ξ∧i = log(∆xi) =

 0 −ωi ρ1,i
ωi 0 ρ2,i
0 0 0

 ∈ se(2).

Then, represent the element of the Lie algebra in its param-
eterized form,

(ξ∧i)
∨ = ξi =

ρ1,iρ2,i
ωi

 ∈ R3.

Then, spline between these vectors to produce a C2 contin-
uous spline s(t) ∈ R3. Finally, apply the exponential map to
get back onto the Lie group, then de-reference the poses back
to the global frame:

γsp = x0 exp(s(t)).

This path γsp will be C2 continuous, however it will not
be feasible for an AV because it is not constraint-aware. This
method does not encode a kinematic model of the vehicle
and thus will not respect the non-holonomic constraints of the
vehicle.

3) Optimization-based Interpolation: As previously men-
tioned, optimization is a standard approach to produce a path
restricted by many constraints. In this subsection, we will
formalize a Gauss-Newton optimization approach to produce
a path γGN that adheres to all of the constraints we desire.
As an initial guess, we will can use either the cubic spline
interpolated path and the piecewise geodesic interpolated path,
but realistically we would want to use an initial guess that is
closer to the global optimum, which may be decided visually.
First, we will define the residuals that compose the cost func-
tion. To ensure conformance with the kinematic constraints of
the vehicle, we define a rkin that ensures conformity with a
kinematic bicycle model. The state space of the bicycle model
is,

x = [x, y, θ]T ,

where position is given by the (x, y) tuple and orientation
is given by θ. The control inputs are given by,

u = [v, δ]T ,

where v is the vehicle’s velocity, and δ is the vehicle’s
steering angle.

We define rkin as the difference between the actual pose
update and the kinematic pose update. The discrete kinematic
pose difference is given by,

ẋ =

ẋẏ
θ̇

 =

 v cos (θ)
v sin (θ)
v
L tan (δ)

 ,

where L is the length of the wheelbase. We can define the
kinematic update in pose as,

xkin
k+1 = xk + ẋk∆t =

xk

yk
θk

+

vk cos (θk)
vk sin (θk)
vk
L tan (δk)

∆t,

for k = 0, 1, . . . ,K − 1.
We can then define the kinematic residual at index k as,

rkin
k = log((xkin

k+1)
−1xk+1) = 0.

We require rkin
k = 0, ∀k because adherence to physics is a

hard constraint.
Next, we will define the obstacle avoidance residual. We

will define a Signed Distance Function (SDF) d : SE(2) → R,
where d(xk) > 0 when xk ∈ Cfree and d(xk) ≤ 0 when
xk ∈ Cobs.

We will define our obstacle avoidance residual at step k as,

robs
k = max(0,−d(xk)).

If a given pose is in Cfree, then d(xk) > 0, so robs
k = 0.

However, if a pose is in Cobs, then d(xk) ≤ 0, so robs
k =

−d(xk) > 0 and thus entry into Cobs will be penalized. We do
not require a safety buffer, as Cobs is already inflated by the
size of the vehicle plus a safety buffer.

Next, we will define the waypoint residual, to ensure that
our final path passes exactly through the waypoints produced
by RRT*. We define the waypoint indices as j, where the total
number of waypoints in γRRT∗ is J . The stride s that must
be applied to go from one RRT* waypoint to the next within
the interpolated pose-path is given by s = (K − 1)/(J − 1).
We want the pose at index k = sj, xsj to be exactly equal to
the RRT* waypoint at index j, Wj .

rwp
j = log(x−1

sj Wj) = 0.

We must also define a residual that encourages C2 continu-
ity, because adherence to the kinematic model only requires
C0 continuity. We can do this by taking the second difference
between poses and enforcing it to be 0, just as one would in
cubic spline interpolation. The first forward finite-difference
approximation is generally given by,

x′
k ≈ xk+1 − xk

∆t
,

and the second finite-difference approximation is given by,

x′′
k ≈ xk+1 − 2xk + xk−1

∆t2
.

The first forward finite-difference approximation between
poses is then given by,

f ′
k =

log(x−1
k xk+1)

∆t
,

and the second finite-difference approximation between poses
is given by,

f ′′
k =

f ′
k+1 − 2f ′

k + f ′
k−1

∆t
.

We can then define the C2-continuity residual as,

rC
2

k =
f ′
k+1 − 2f ′

k + f ′
k−1

∆t
= 0,

for k = 1, 2, . . . ,K − 2.
Finally, we define our actuator limits,

|δk ≤ δmax|, 0 ≤ vk ≤ vmax.

The cost function J is defined as,

J(z) =
∑
k

∥∥rkin
k

∥∥2 +∑
j

∥∥rwp
j

∥∥2
+
∑
k

[max(0,−d(xk))]
2
+
∑
k

∥∥∥rC2

k

∥∥∥2 ,
where z = [xT ,uT]T , with

x = [x0, y0, θ0, . . . , xK−1, yK−1, θK−1]
T ,

u = [v0, δ0, . . . , vK−1, δK−1]
T .

We then solve the nonlinear least-squares problem:

z∗ = argmin
z

K−1∑
k=0

∥rkin
k (z)∥2 +

J−1∑
j=0

∥rwp
j (z)∥2

+

K−1∑
k=0

[
max(0,− d(Xk))

]2
+

K−2∑
k=1

∥rC
2

k (z)∥2.

(1)

C. Evaluation Methodology

This project will be implemented in two stages. First, the
global path will be generated in Python using a modified
version of Atsushi Sakai’s RRT* Path Planner with Dubins
Curves [15]. Then, the sparse RRT* path will be passed
to a Python script that interfaces with the CARLA Python
API [1], which generates the ego vehicle and simulates its
interaction with the environment using a physics-based model.
The solution will be evaluated in a forward-only parking lot
scenario.

Evaluation metrics will aim to quantify the drive comfort
and safety of the final path. In CARLA, this is done by
placing an Inertial Measurement Unit (IMU) into the vehicle
as would be done in a real vehicle. To assess drive comfort,
lateral acceleration and lateral jerk are considered fundamental
vehicle kinematic factors that shape passenger comfort [16].
Longitudinal acceleration and jerk are not used because the
path is not time-parameterized; the vehicle maintains a con-
stant velocity throughout the entire drive, thus longitudinal
dynamics are not relevant for comfort in this evaluation.

Fig. 1: Configuration space of the example scenario, with
the random tree produced by RRT* in green. The final path
produced by RRT* is in red.

Finally, the number of collisions will be used as the primary
metric to quantify safety.

The planner that will be used as a baseline for comparison
will be the sparse, piecewise linearly interpolated path pro-
duced by RRT*, which is not SE(2) aware.

IV. EXPERIMENTS AND RESULTS

A bird’s-eye-view of the example scenario is given in
Figure 1, where the black space represents Cobs, and the white
space represents Cfree. The green lines indicate the paths that
RRT* has sampled and the final path is indicated by the red
line.

The poses generated by RRT* are sparse, as shown in
Figure 2.

Fig. 2: RRT* generated pose graph.

Fig. 3: Interpolated pose-path using Piecewise Geodesic Inter-
polation.

Applying piecewise geodesic interpolation to γRRT∗ yields
the path illustrated in Figure 3. The lack of C1 continuity is
most obvious at the waypoints. Visually, we can see that this
path requires an instantaneous change in heading at certain
points in the path. We can demonstrate C0 continuity by
plotting the interpolated function and its derivatives in the Lie
algebra, which is given in Figure 5.

Applying cubic spline interpolation to γRRT∗ yields the path
illustrated in Figure 4. Though this path is now C2 contin-
uous as depicted by Figure 6, this path is still not feasible
for a vehicle with non-holonomic constraints, as it requires
lateral velocity with little or no longitudinal velocity. This is
expected, as a spline on SE(2) does not inherently incorporate
a kinematic model of the vehicle and thus will violate the
non-holonomic constraints. Furthermore, this interpolated path
does not respect obstacle constraints, so there is a possibility
that the vehicle will enter Cobs, meaning that the vehicle may
crash.

The top subplot in Figure 7 depicts the lateral acceleration
on the vehicle using piecewise geodesic interpolation in blue,
cubic spline interpolation in green, and SE(2)-unaware linear
interpolation in red. At every waypoint before the sharp
turn occurs at the 12 second mark, the linearly interpolated
path incurs spikes in lateral acceleration, while piecewise
geodesic interpolation and cubic spline interpolation smooth
it out. Notably, piecewise geodesic interpolation has very
large spikes in jerk during the sharp turn, indicating that C0

continuity translates directly into uncomfortable driving. We
cannot observe the C2 continuity of the cubic spline smoothing

Fig. 4: Interpolated pose-path using Cubic Spline Interpola-
tion.

out the path, because the cubic spline interpolated path causes
the vehicle to crash into an obstacle just after the 15 second
mark, demonstrated by the large spike in lateral acceleration
and jerk. The subsequent low magnitude in lateral acceleration
and jerk is due to the vehicle remaining in the position it
crashed in for a very long time, attempting to continue to the
next waypoint.

Summary statistics are given in Table I. Piecewise geodesic
interpolation only increases the mean absolute lateral acceler-
ation by 8.67%, but decreases mean absolute lateral jerk by
20.37%. A decrease in mean lateral jerk indicates that the
piecewise geodesic interpolation is more predictable in terms
of the change in lateral g-force a passenger would feel through-
out the course of a ride, which is a desirable attribute. Cubic
spline interpolation only superficially decreases mean average
lateral acceleration and jerk, because it remains stationary due
to many collisions with nearby vehicles for the majority of the
scenario. This is also the reason for the lengthy drive time.

Summarized by Table II, the SE(2)-unaware linearly in-
terpolated path and the piecewise geodesic interpolated path
result in 0 crashes, the cubic spline interpolated path results in

Method Mean Accel(m
s2

) Mean Jerk(m
s3

) Drive Time (s)

Piecewise Geodesic 0.6126 3.1217 21.65
Cubic Spline 0.4117 2.3431 95.50
SE(2) Unaware Linear 0.5637 3.9205 20.55

TABLE I: Summary of Lateral Acceleration, Jerk, and Drive
Time

(a) (b) (c)

Fig. 5: (a) Piecewise Geodesic Interpolation in se(2). (b) First derivative of the interpolating function in se(2). (c) Second
derivative of the interpolating function in se(2).

(a) (b) (c)

Fig. 6: (a) Cubic Spline Interpolation in se(2). (b) First derivative of the interpolating spline in se(2). (c) Second derivative of
the interpolating spline in se(2).

a total of 3 crashes. Here, PGI is short for piecewise geodesic
interpolation, and CSI is short for cubic spline interpolation.
These results are not surprising judging by the interpolated
pose-paths for each of the interpolation methods.

As of the submission of this report, the Gauss-Newton
optimization method has converged but the resulting pose-
path does not adhere to any of the constraints imposed
by the residuals likely due to a bug or convergence to a
poor local minimum. For this reason, the pose-path from the
optimization-based approach is not displayed in this report.

SE(2) Unaware Linear PGI CSI

Number of collisions 0 0 3

TABLE II: Number of collisions for each interpolation
method.

As a result of this project, I learned a lot about Lie
groups and their application to non-holonomic motion plan-
ning. At first, I had incorrectly assumed that producing a cubic
spline on SE(2) would enforce the vehicle’s non-holonomic
constraints. I believed this because rotation and translation
are coupled due to SE(2) being a semi-direct product of
SO(2) and R2, so I assumed that translation on SE(2) would
inherently be aligned with orientation. Now I realize that SE(2)
does not inherently encode motion constraints, meaning that
lateral-only movement with respect to orientation is allowed.
To constrain movement on SE(2), one needs to explicitly
incorporate a kinematic model, and it is most natural to do
so using an optimization-based approach. While formulating
the optimization problem, I gained a deeper understanding of
how to draw analogues from standard math to math on Lie
groups, especially when I was defining the kinematic residual
rkin and the C2-continuity residual rC2 . I have also learned

Fig. 7: Top: Lateral acceleration of the vehicle following its respective path. Bottom: Lateral acceleration of the vehicle
following its respective path.

(and am still learning) about how to use and debug solvers
such as those provided by SciPy [17] and CasADi [18].

V. CONCLUSION

This project demonstrated a two-stage path planner that
combines an asymptotically-optimal global planner RRT*
with Dubins Curves with three increasingly sophisticated
Lie group-aware interpolation methods. Piecewise geodesic
interpolation yielded a marginal increase in mean lateral
acceleration but a sizeable decrease in mean lateral jerk,
while maintaining zero collisions. The primary downside of
piecewise geodesic interpolation is that it contains disconti-
nuities at waypoints, meaning the interpolated pose-path is
C0 continuous. Piecewise geodesic interpolation also does not
encode a kinematic model of the vehicle. For both reasons,
the final path is not feasible for a vehicle. Cubic spline
interpolation achieves global C2 continuity, however its lack
of kinematic and obstacle constraint-awareness produced a
pose-path that was not feasible for a vehicle, resulting in
three collisions. The optimization approach seems promising,
however practical considerations have prevented the approach
from producing a feasible path that obeys all of the constraints.

For future work, I will attempt to constrain a spline in
the Lie algebra by kinematic and obstacle constraints, which
I believe has not been done before. I will also investigate
defining a subgroup of SE(2) in which movement on this

subgroup is defined by a kinematic model, ensuring that
splining in the Lie algebra respects that kinematic model.
Finally, I will continue to work on the optimization approach
to this problem, as I am very close to achieving the goal of
feasible path generation subject to the constraints defined in
Section III.

REFERENCES

[1] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” 2017. [Online]. Available:
https://arxiv.org/abs/1711.03938

[2] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” in Motion
and Operation Planning of Robotic Systems: Background and Practical
Approaches, G. Carbone and F. Gomez-Bravo, Eds. Cham: Springer
International Publishing, 2015, pp. 3–27.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” 2011. [Online]. Available:
https://arxiv.org/abs/1105.1186

[4] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957. [Online]. Available: http://www.jstor.org/stable/2372560

[5] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[6] J. Pan, L. Zhang, and D. Manocha, “Collision-Free and
Curvature-Continuous Path Smoothing in Cluttered Environments,”
in Robotics: Science and Systems VII. The MIT
Press, Jun. 2012, eprint: https://direct.mit.edu/book/chapter-
pdf/2269950/9780262305969 ccv.pdf. [Online]. Available:
https://doi.org/10.7551/mitpress/9481.003.0035

[7] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning
techniques for mobile robots: Review and prospect,” Expert Systems
with Applications, vol. 227, p. 120254, Oct. 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095741742300756X

[8] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” in 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 625–632.

[9] A. Khanal, “Rrt and rrt* using vehicle dynamics,” 2022. [Online].
Available: https://arxiv.org/abs/2206.10533

[10] A. Choudhary, Y. Kobayashi, F. J. Arjonilla, S. Nagasaka, and M. Koike,
“Evaluation of mapping and path planning for non-holonomic mobile
robot navigation in narrow pathway for agricultural application,” in 2021
IEEE/SICE International Symposium on System Integration (SII), 2021,
pp. 17–22.

[11] L. Han, Q. H. Do, and S. Mita, “Unified path planner for parking
an autonomous vehicle based on rrt,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 5622–5627.

[12] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic
vehicle model,” in 2006 2nd International Conference on Information
and Communication Technologies, vol. 1, 2006, pp. 781–786.

[13] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C.
Peng, “Path smoothing techniques in robot navigation: State-of-the-art,
current and future challenges,” Sensors, vol. 18, no. 9, 2018. [Online].
Available: https://www.mdpi.com/1424-8220/18/9/3170

[14] C. Tomlin, “Splining on lie groups,” University of California and
Berkeley, Tech. Rep., 1995.

[15] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“Pythonrobotics: a python code collection of robotics algorithms,”
2018. [Online]. Available: https://arxiv.org/abs/1808.10703

[16] C. Peng, C. Wei, A. Solernou, M. Hagenzieker, and N. Merat,
“User comfort and naturalness of automated driving: The effect
of vehicle kinematic and proxemic factors on subjective response,”
Applied Ergonomics, vol. 122, p. 104397, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003687024001741

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[18] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “Casadi:
a software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, 07 2018.

